
Object detection in construction department
Pralipa Nayak

Machine learning Developer
pralipan@vconstruct.in

Abstract:

The capability to automatically identify
shapes and objects from the image content
through direct and indirect methodologies has
enabled the development of several civil
engineering related applications that assist in
the development of construction projects. This
paper shows how this automation process has
been made possible using Machine Learning
techniques to reduce the time and effort
consumed in the field of construction industry.
Also how technology has helped to transform
the construction industry. Manually where
various objects like doors, beams and columns
were detected throughout an architectural plan
by counting and recording, this process used to
take many hours to work on a single plan.
Automating this process with the help of
Object detection and Machine learning has
helped to reduce the time and effort
consumption by a huge margin.

Introduction:

In the construction industry, most of the
work, from verifying an architectural plan to
detecting various objects in the plan, are done
manually. This in turn takes a lot of time and
effort.

Object detection is a computer vision
technique that can be used to automate this
process which in turn, will reduce time and
effort to a great extent. It basically has a series
of instructions for a computer to transform
input data into desired output. Instructions are
mostly based on an IF-THEN structure: when
conditions are met, the program executes a
specific action.

Machine learning techniques like
Image processing can be used to further
enhance this process and perform object
detection with better accuracy and speed. It
enables machines to solve problems with little

or no human input., and take actions based on
past observations. This approach will help to
automate detecting various objects in an
architectural plan and various other work and
help us save time and effort.

Background:

We are surrounded by different types of
beautiful architecture around us. And the basis
for any architecture is the architectural plan.
For any architecture to stand firmly for ages,
the plan should be perfect with negligible to
no flaws.

Object detection helps to a great extent in
recognizing designs according to existing data
and extracting data from them for further
investigations like finding flaws or whether
any section needs changes, detecting changes
in revised plans in accordance with old plans
and quantifying elements in a plan.

Figure 1. Image of an architectural plan from
which doors and water closets are to be
recognized.

The above given figure is an architectural
plan, based on which construction will be
made. Our goal was to detect various objects
like doors, water closets, columns, beams etc.



Approach:

On-Screen Takeoff is a construction
estimating and takeoff solution for contractors
and construction professionals. It is widely
used to mark items on a 2d plan and add
properties to the items. Once the relevant
items are marked, it can extract the desired
quantities as required. But this is a manual
process and is repetitive in all projects. On an
average, it requires nearly a day for a single
plan. Another tool called Autodesk Takeoff
also does the same thing, however it also takes
a similar amount of time.

Figure 2. Image showing details of a page in
On-screen Takeoff.

Figure 2 shows the details of the
architectural pan in an indexed way. Using
OST(On-screen Takeoff) formulas are
prepared to mark different objects like doors,
water closets, etc one by one. The objects are
then marked throughout all the pages as per
the formulas manually. This method takes up
lots of time and effort.

Figure 3. Image showing marked doors in the
architectural plan.

As per figure 3, we can see the doors have
been marked as per the formulas created
however it was done one by one for all the
objects. All the similar objects will be marked
the same way.

The next approach was to use machine
learning techniques to make the process
automated. This way we were able to get the
data in a very less amount of time as compared
to the manual approach. Machine learning
helped us to get the data within an hour which
saved us lots of time. We had a pdf which has
multiple pages of architectural plans. Machine
learning techniques like pdf mining and image
processing were used to achieve the results.
Pdf mining helped in reading and extracting
details from every page.

Challenges:

The first approach for ML was using
OpenCV. The challenges faced were:

1. This approach detects images exactly
the same as template images.

2. This approach does not support
rotation and resizing of objects so to
solve the rotation issue the template
image was rotated 90 degree
clockwise, 180 degree and 90 degree
counterclockwise then all the rotated
template images were matched to the
input image and the output was found,
however the size of the object in input
image has to be exact with the template
image size and if one object in input
image is rotated by 95 degree, then
OpenCV won’t consider this as a
match.

3. Accuracy was extremely low and it did
not support overlapping.

The next approach was using Tensorflow.
The challenges faced were:

1. The accuracy was very good (above
95%), however it did not work with
larger images(2-4 MB) which did not
satisfy the requirement.



The next approach was Custom-Vision. The
challenges faced were similar to the former
approach.

1. Though it supports overlapping and
accuracy was also very good(above
95%), it did not work with large
images(2-4MB) which did not satisfy
the requirement.

Solution:

Then we moved towards using YoloV5 (You
Only Look Once).

As per machine learning standards, first train
and test datasets were prepared by splitting in
80-20 ratio and labelled using LabelImg
library.

After labelling, the model was trained using
YoloV5 (You Only Look Once) and we got the
trained model for detecting doors.
Then we converted the pdf page to an image
file in which object(door) detection was
performed.

As a 2-d architectural plan is way too large,
we used a library called SAHI to detect objects
in large images. SAHI stands for Small object
detection by slicing Aided Hyper Interface. It
is a vision library for large scale object
detection and instance segmentation. What
SAHI basically does is, it slices large images
into smaller segments and performs object
detection on those segments so it easily picks
almost all the objects in a large image.

We created a script written in python3 that
loads the trained model, takes up the pdf file
as an input parameter, reads each page as an
image, then uses SAHI to slice the image and
perform object detection on the image with
pretty good accuracy.

Figure 4. Image with detected doors and
labeled accordingly.

The above image is one of the results we got
after performing object detection on a given
pdf file. The detected doors haven been
labelled as doors at their respective
coordinates. This gives us a clear idea of
which of the elements present in the image (a
page in pdf) are doors or any other elements.

Similar process was followed for detecting
other objects. Model was trained accordingly
using related datasets and prediction was made
based on the trained model.

Another scenario popped where we needed
written textual data from pdf files consisting of
tables. This seemed easy as there are lots of
packages like Camelot, PyPdf that deal with
such scenarios. However, they are limited to
text pdfs. The need was to extract those data
from image/ scanned pdfs. Image processing
helped here too. Pytesseract or
Python-tesseract was used to get the results.
Pytesseract is an Optical Character
Recognition tool for python. It reads and
recognizes text in images.

The challenge now was to provide the
coordinates or the location from where
pytesseract will perform the recognition. Since
in a table, the data are separated to groups
using vertical and horizontal lines, those lines
were extracted first. It was done by inverting
the image first to monochrome. Then the
vertical line and horizontal lines were
extracted from the table, which helped us get
the coordinates from the image. The
co-ordinates were then used to verify the
locations from where we needed the data and
were given to pytesseract, which read and
recognized the text from those locations and
gave us the data. This flow was achieved by
bundling pytesseract with some data structure
logic, used for manipulating the data in
required structure.

The above mentioned flow is also used to
extract data from the earlier mentioned 2d
architectural plans like beams and columns
data. Since they are also made as horizontal
and vertical lines, this algorithm helps extract
data like the length, angles, and thickness of
the parameters. Which is required for major



calculations while moving with a construction
project.

Pdf files with data stored in the form of
tables but where pages are images instead of
plain texts are used. Here the image was
processed with pytesseract to extract the data
from it. First it was inverted to monochrome
format and horizontal lines were extracted
from the inverted image. Then from the
inverted image, vertical lines were extracted.
Both extracted images were then merged
which gave us an inverted image of the whole
table.

After the horizontal and vertical lines were
merged to get the whole table in inverted
format, the resulting image was then used to
contour the image, Figure 5.

Figure 5. Table after contouring.

The coordinates were then used to recognise
the smaller rectangles. And then from those
rectangles, the data from the table were
extracted based on some keywords like the
column names. Thus data was successfully
extracted from the image pdf with zero errors.

Conclusion:

The algorithms created were tested
rigorously on various types of data. Which in
turn gave us lots of error and opportunity at
the same time to resolve them and get the
algorithms ready for use with negligible to
zero failures or error results.

The manual approach, using OST, gave
results while taking a longer period of time,

almost more than 15 hours, with involvement
of human resources. This problem was solved
using Machine learning where the process
took just some minutes also without requiring
any human efforts. This paper shows how this
automated process can save us a huge amount
of time and effort as compared to manual
approaches. If implemented on a larger scale,
this process can save a lot of time and effort,
which in turn can save a lot of funds.

References:

[1] Fitz
https://pymupdf.readthedocs.io/en/latest/modu
le.html
https://github.com/pymupdf/PyMuPDF/blob/m
aster/fitz/fitz.i
[2] LabelImg
https://github.com/heartexlabs/labelImg
https://towardsdatascience.com/how-to-label-i
mages-for-object-detection-step-by-step-7ee31
7f98583
https://medium.com/deepquestai/object-detecti
on-training-preparing-your-custom-dataset-62
48679f0d1d
[3] YoloV5
https://github.com/ultralytics/yolov5
https://learnopencv.com/custom-object-detecti
on-training-using-yolov5/
https://stackabuse.com/object-detection-infere
nce-in-python-with-yolov5-and-pytorch/
[4] SAHI
https://github.com/obss/sahi
https://medium.com/codable/sahi-a-vision-libr
ary-for-performing-sliced-inference-on-large-i
mages-small-objects-c8b086af3b80
https://analyticsindiamag.com/small-object-det
ection-by-slicing-aided-hyper-inference-sahi/

Pralipa Nayak
Machine learning Developer
pralipan@vconstruct.in

https://pymupdf.readthedocs.io/en/latest/module.html
https://pymupdf.readthedocs.io/en/latest/module.html
https://github.com/pymupdf/PyMuPDF/blob/master/fitz/fitz.i
https://github.com/pymupdf/PyMuPDF/blob/master/fitz/fitz.i
https://github.com/heartexlabs/labelImg
https://towardsdatascience.com/how-to-label-images-for-object-detection-step-by-step-7ee317f98583
https://towardsdatascience.com/how-to-label-images-for-object-detection-step-by-step-7ee317f98583
https://towardsdatascience.com/how-to-label-images-for-object-detection-step-by-step-7ee317f98583
https://medium.com/deepquestai/object-detection-training-preparing-your-custom-dataset-6248679f0d1d
https://medium.com/deepquestai/object-detection-training-preparing-your-custom-dataset-6248679f0d1d
https://medium.com/deepquestai/object-detection-training-preparing-your-custom-dataset-6248679f0d1d
https://github.com/ultralytics/yolov5
https://learnopencv.com/custom-object-detection-training-using-yolov5/
https://learnopencv.com/custom-object-detection-training-using-yolov5/
https://stackabuse.com/object-detection-inference-in-python-with-yolov5-and-pytorch/
https://stackabuse.com/object-detection-inference-in-python-with-yolov5-and-pytorch/
https://github.com/obss/sahi
https://medium.com/codable/sahi-a-vision-library-for-performing-sliced-inference-on-large-images-small-objects-c8b086af3b80
https://medium.com/codable/sahi-a-vision-library-for-performing-sliced-inference-on-large-images-small-objects-c8b086af3b80
https://medium.com/codable/sahi-a-vision-library-for-performing-sliced-inference-on-large-images-small-objects-c8b086af3b80
https://analyticsindiamag.com/small-object-detection-by-slicing-aided-hyper-inference-sahi/
https://analyticsindiamag.com/small-object-detection-by-slicing-aided-hyper-inference-sahi/

